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Abstract
An angular momentum (2j + 1)-dimensional Hilbert space H is considered.
Symplectic transformations S on the tensor product of N of these spaces
H ⊗ · · · ⊗ H are studied for the case when the 2j + 1 is a power of a prime
(Galois case). The corresponding operators are calculated numerically. The
formalism is applied to quantum coding. A simple repetition code based on the
space HA spanned by the direct products of N angular momentum states with
the same m, has distance 1. It is shown that a code based on the symplectically
transformed space SHA has (in general) larger distance. An example with three
qutrits is discussed in detail.

PACS numbers: 03.67.−a, 03.65.Ca

1. Introduction

Quantum systems with finite Hilbert space were studied originally by Weyl and also by
Schwinger [1]. More recently they have been studied by many authors [2, 3] both as a subject
in its own right and also in the context of various applications. In a recent paper [4] we
have considered a composite quantum system comprising two subsystems each of which is
described by a d-dimensional Hilbert space. In this system we have studied unitary SU(d2)

transformations, which we classified into local and entangling ones. We have also studied
in more detail the symplectic Sp(4,Z(d)) transformations (where Z(d) are the integers
modulo d ).

In this paper we consider a N-partite system comprising N angular momentum sub-systems
each of which is described by a (2j + 1)-dimensional Hilbert space. In this system we study
symplectic Sp(2N,Z(2j + 1)) transformations and construct numerically the corresponding
operators. The formalism is then applied to quantum coding.

Quantum coding introduces redundancy in order to protect qubits from errors. The
simplest coding schemes are the three qubit repetition codes (reviewed in [5]). However it
is easily seen that they protect qubits from a very limited class of errors. For example, the
three qubit bit flip code cannot protect against phase errors; and the three qubit phase flip
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code cannot protect against bit flip errors. For protection against larger classes of errors more
qubits are required. Arbitrary errors at known positions (erasures) require at least four qubits
[6]. More general errors require at least five qubits [7]. Other coding schemes which provide
protection against any one-qubit error are Shor’s nine qubit code [8] and the seven qubit
code [9].

Much of the work on quantum computation and quantum coding has been based on qubits
in two-dimensional Hilbert spaces. More recently the use of multi-dimensional Hilbert spaces
(qudits) as a potentially more powerful tool has been studied [10]. A generalization of Shor’s
nine qubit code for qudits was studied in [11]. In this paper we show that the use of entangling
symplectic transformations on a simple repetition code with N qudits, increases the distance
of the code. As the distance of the code increases, errors on more qudits can be corrected.

In section 2 we briefly introduce the formalism for quantum systems with finite Hilbert
spaces (qudits) with emphasis on the symplectic transformations. We have explained
previously [3, 11] that when 2j + 1 = pn where p is a prime number, the Z(2j + 1) is a
Galois field (which we denote as GF(pn)). In this case the phase space is a finite geometry
[12] and symplectic transformations form the Sp(2N,GF(pn)) group [13–15]. Here we
explicitly discuss an example for the case j = 4 (i.e., GF(9)), in order to see in detail how the
Galois theory is embodied into our formalism for qudits (‘Galois qudits’). Codes over GF(4)

have been discussed in [16].
In section 3 we consider products of N finite Hilbert spaces (multiqudits) and study

symplectic Sp(2N,GF(pn)) transformations in them. We explain that some of these
transformations are local and some are entangling ones.

In section 4 we consider repetition codes with qudits and apply symplectically entangling
transformations on them. We show that in the resulting code space of symplectically entangled
qudits, all generators of transformations involve simultaneous transformations on more than
one qudits and therefore the distance of the code increases. The general formalism is applied
to an example which consists of three qutrits and which is shown to have distance 2.

We conclude in section 5 with a discussion of our results.

2. Qudits

Quantum systems with finite Hilbert space have been studied for a long time [1–3]. In [3] we
have applied these ideas in the context of the angle-angular momentum quantum phase space.
In this section we first briefly review some of these ideas in the context of qudits and introduce
the notation. We then study symplectic transformations, which are central for this work. As
explained in [3] in the two cases of integer j (Bose case) and half-integer j (Fermi case) some
of the formulae are slightly different. Below we give the formulae for the Bose case, and in
appendix A we summarize briefly the required amendments for the Fermi case.

We denote as |J ; j m〉 the usual angular momentum states. Here the symbol J is not
a variable but it simply indicates that they are angular momentum states. m belongs to
Z(2j + 1). The states |J, j m〉 span the Hilbert space H(2j + 1). The finite Fourier transform
is defined as

F = (2j + 1)−1/2
∑
m,n

ω(mn)|J ; j m〉〈J ; j n| (1)

ω(α) = exp

[
i

2πα

2j + 1

]
FF † = F †F = 1 F 4 = 1. (2)
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Using these Fourier transforms we have introduced [3] the θ -basis of angle states |θ; j m〉
as follows:

|θ; j m〉 = F |J ; j m〉 = (2j + 1)−1/2
∑

n

ω(mn)|J ; j n〉. (3)

Here the symbol θ is not a variable but it simply indicates that they are angle states. We have
also introduced the angle operators θ+, θ−, θz

θz = FJzF
† θ+ = FJ+F

† θ− = FJ−F † (4)

which obey the SU(2) algebra. The θ -operators act on the θ -states in an analogous way to the
J -operators acting on the J -states. The displacement operators are defined as

X = exp

[
−i

2π

2j + 1
θz

]
Z = exp

[
i

2π

2j + 1
Jz

]
(5)

X2j+1 = Z2j+1 = 1 XβZα = ZαXβω(−αβ) (6)

where α, β are integers in Z(2j + 1). They perform displacements along the Jz and θz axes in
the Jz − θz phase space (which is the toroidal lattice Z(2j + 1) × Z(2j + 1)), as follows:

Xβ |J ; j m〉 = |J ; j m + β〉 Xβ |θ; j m〉 = ω(−βm)|θ; j m〉 (7)

Zα|J ; j m〉 = ω(mα)|J ; j m〉 Zα|θ; j m〉 = |θ; j m + α〉. (8)

The general displacement operators are defined as

D(α, β) = ZαXβω(−2−1αβ) [D(α, β)]† = D(−α,−β) (9)

D(α, β)D(γ, δ) = ω[2−1(αδ − βγ )]D(α + γ, β + δ) (10)

where 2−1 is the inverse of 2 within Z(2j + 1) (which in fact is j + 1, but for similarity with
the harmonic oscillator case we prefer to keep the notation 2−1).

We can prove that an arbitrary operator U can be expanded as

U = (2j + 1)−1
∑
α,β

W̃ (U ;−α,−β)D(α, β) W̃ (U ;α, β) = Tr[UD(α, β)] (11)

where W̃ (U ;α, β) is the Weyl function (which is the two-dimensional Fourier transform of
the Wigner function). This can be proved if we take the matrix elements of both sides with
regard to the states 〈J ; j n| and |J ; j m〉.

2.1. Symplectic transformations

In the Z(2j + 1) × Z(2j + 1) phase space we consider the unitary transformations,

X′ = SXS† = XαZβ Z′ = SZS† = Xγ Zδ αδ − βγ = 1(mod(2j + 1)) (12)

where α, β, γ, δ are integers in Z(2j + 1).
These transformations preserve equations (6), i.e., (X′)2j+1 = (Z′)2j+1 = 1 and also

(X′)β(Z′)α = (Z′)α(X′)βω(−αβ). The ‘new’ operators X′, Z′ displace differently the various
states in comparison with the ‘old’ operators X,Z; but since the α, β, γ, δ are integers, the
lattice phase space Z(2j +1)×Z(2j +1), is preserved. The symplectic transformations rotate
and rescale the Jz and θz axes into J ′

z = SJzS
† and θ ′

z = SθzS
† in a way that the lattice phase

space Z(2j + 1) × Z(2j + 1), is preserved.
The symplectic transformations of equation (12) contain four variables but because of

the constraint, there are three independent variables. The question of the existence of the
‘inverses’ of the elements of Z(2j + 1) arises here, because if they exist then for a given triplet
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α, β, γ (with α �= 0) there exist δ = α−1(βγ + 1) which satisfies the constraint. When the
(2j + 1) is a power of a prime p(2j + 1 = pn), the Z(pn) is a Galois field and all non-zero
elements have an inverse. In Galois fields with n � 2, the addition and multiplication rules are
different from the ‘standard’ ones, and in order to emphasize this we use the notation GF(pn).
When the (2j + 1) is not a power of a prime, the Z(2j + 1) is a commutative ring with a unity,
and inverses do not necessarily exist.

For n = 1 it is easily seen that the Z(p) is a field. For higher values of n the concept
of field extension of Z(p), of degree n is required (e.g., [17]). The elements are written as
polynomials of an indeterminate ε with coefficients in Z(p). These polynomials are defined
modulo with an irreducible polynomial π(ε) of degree n. Different irreducible polynomials
of the same degree n lead to isomorphic finite fields, and in this sense there is only one finite
field which we denote as GF(pn). For practical purposes, irreducible polynomials and the
corresponding addition and multiplication tables can be found in computer libraries (e.g.,
MATLAB).

We call Galois qudits, the qudits associated with Hilbert spaces with dimension pn. The
phase space GF(pn) × GF(pn) of Galois qudits, is a finite geometry [12] and dilations,
contractions and discrete rotations are well defined. In contrast, the phase space of non-Galois
qudits, is a set of points with no geometrical structure.

Therefore, symplectic transformations on non-Galois qudits can be performed only if
α, β, γ, δ can be found such that αδ − βγ = 1(mod(2j + 1)). For Galois qudits we make
a much stronger statement that for any α, β, γ there exists the corresponding symplectic
transformation. This is because the phase space is a finite geometry and discrete rotations are
well defined. Below we discuss explicitly Galois qudits corresponding to GF(9).

The transformations of equation (12) form the symplectic Sp(2,GF(pn)) group of
transformations (the analogue of Sp(2, R) in the harmonic oscillator). For practical purposes
it is useful to calculate the operator S. A numerical calculation of the matrix elements
〈J ; j n|S|J ; j m〉 has been presented in [4].

We should emphasize that there is no ‘natural ordering’ of the states in finite systems.
Any ordering depends on how we define the operators and will be changed with symplectic
transformations. As an example, we consider the case j = 2 the operators X and Z and
the corresponding states |J ; 2m〉 and |θ; 2m〉. We perform the symplectic transformations
X′ = X2, Z′ = Z3 and find the corresponding J -states (denoted with prime)

|J ′; 2 − 2〉 = |J ; 2 1〉 |J ′; 2 − 1〉 = |J ; 2 − 2〉 |J ′; 2 0〉 = |J ; 2 0〉
|J ′; 2 1〉 = |J ; 2 2〉 |J ′; 2 2〉 = |J ; 2 − 1〉 (13)

and also the corresponding θ -states

|θ ′; 2 − 2〉 = |θ; 2 − 1〉 |θ ′; 2 − 1〉 = |θ; 2 2〉 |θ ′; 2 0〉 = |θ; 2 0〉
|θ ′; 2 1〉 = |θ;−2 − 2〉 |θ ′; 2 2〉 = |θ; 2 1〉. (14)

We see that the symplectic transformations have reordered the J-states and also the θ -states.

2.2. Galois qudits in GF(9)

The field GF(9) consists of the integers n = nA + εnB where nA, nB ∈ Z(3). We use the
terms ‘A-Galois’ (AG) and ‘B-Galois’ (BG) parts of n for the nA and nB correspondingly,

AG(n) = nA BG(n) = nB. (15)

We choose the irreducible polynomial π(ε) = ε2 + ε + 2. We note that results of calculations
do depend on the choice of the irreducible polynomial, but different choices lead to isomorphic
results. For this irreducible polynomial we have

ε2 = −ε − 2 = −ε + 1 = 2ε + 1. (16)
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Addition and multiplication are given by

n + m = (nA + mA) + ε(nB + mB)

nm = nAmA + ε(nAmB + nBmA) + ε2nBmB (17)

= (nAmA + nBmB) + ε(nAmB + nBmA − nBmB).

Some useful relations for later purposes are

nε = nB + (nA − nB)ε AG(nε) = BG(n) AG(nm) = nAmA + nBmB. (18)

We consider the Hilbert space H(9) = HA(3) ⊗ HB(3) spanned by the angular
momentum states

|J ; 4 n〉 ≡ |JA; 1 nA〉 ⊗ |JB; 1 nB〉 n = nA + εnB. (19)

We use the indices A and B for states and operators acting on HA(3) and HB(3),
correspondingly. The angle states are defined as

|θ; 4 m〉 = |θA; 1 mA〉 ⊗ |θB; 1 mB〉 = 3−1
∑
nA,nB

ω[AG(mn)]|JA; 1 nA〉 ⊗ |JB; 1 nB〉

ω = exp

[
i
2π

3

]
. (20)

As we explained above, ordering of these states is arbitrary and changes with symplectic
transformations.

We consider the operators Z and X acting on H(3). We define the operator Zα acting on
H(9) = HA(3) ⊗ HB(3), where α = αA + εαB is in GF(9), as

Zα = (
Z

αA

A

) ⊗ (
Z

αB

B

)
. (21)

Here the indices A and B indicate the Hilbert space on which these operators act. They are
superfluous, in the sense that it is obvious that the first operator of the tensor product acts
on HA(3) and the second on HB(3); but for more clarity we include them. Examples of
equation (21) are, Z = ZA ⊗ 1 and Zε = 1 ⊗ ZB . It is easily seen that

ZαXβ = (
Z

αA

A X
βA

A

) ⊗ (
Z

αB

B X
βB

B

)
(22)

and also that

XβZα = ZαXβω[−AG(αβ)]. (23)

A consequence of that is

XZε = ZεX. (24)

More generally if αB = βA = 0 or if αA = βB = 0, then the Xβ commutes with the Zα .
Calculations of the power of a power need to take into account the multiplication rule of

equation (17). For example,

(Zm)n = Zmn = Z
mAnA+mBnB

A ⊗ Z
mAnB +mBnA−mBnB

B . (25)

Powers of XβZα are more complicated and they are discussed in appendix B. It is seen that
the formalism of this section is not simply the direct product of two qutrits, because the Galois
structure has been embodied in it.

The displacement operators D(α, β) defined earlier are in the present context given by

D(α, β) = ZαXβω[−2−1AG(αβ)]

= [
Z

αA

A X
βA

A ω(−2−1αAβA)
] ⊗ [

Z
αB

B X
βB

B ω(−2−1αBβB)
]

(26)
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and obey the relation

D(α, β)D(γ, δ) = ω[2−1AG(αδ − βγ )]D(α + γ, β + δ). (27)

The Zα act on the angular momentum states and angle states, as follows:

Zα|J ; 4 m〉 = ω[AG(mα)]|J ; 4 m〉 Zα|θ; 4 m〉 = |θ; 4 m + α〉. (28)

For example, if we act with these operators on the state |θ; 4 − 1 − ε〉, we get

Z−1|θ; 4 − 1 − ε〉 = |θ; 4 1 − ε〉 Z−1−ε |θ; 4 − 1 − ε〉 = |θ; 4 1 + ε〉
Z−1+ε |θ; 4 − 1 − ε〉 = |θ; 4 1〉 Zε |θ; 4 − 1 − ε〉 = |θ; 4 − 1〉
Z−ε |θ; 4 − 1 − ε〉 = |θ; 4 − 1 + ε〉 Z|θ; 4 − 1 − ε〉 = |θ; 4 − ε〉
Z1−ε |θ; 4 − 1 − ε〉 = |θ; 4ε〉 Z1+ε |θ; 4 − 1 − ε〉 = |θ; 4 0〉.

(29)

Symplectic transformations are given by

X′ = SXS† = XαZβ Z′ = SZS† = Xγ Zδ (30)

where α, β, γ, δ, are in GF(9). We require the following commutation relation:

ωX′Z′ = Z′X′ → AG(αδ − βγ ) = 1. (31)

However this is not enough. In addition, according to equation (24) we require that

X′(Z′)ε = (Z′)εX′ → AG[ε(αδ − βγ )] = 0 → BG(αδ − βγ ) = 0. (32)

The two constraints of equations (31) and (32) can be combined into one constraint

αδ − βγ = 1 (33)

which is the same as in equation (12).
An example of symplectic transformations on these qudits is

X′ = SXS† = X1+εZ−1+ε = (
XAZ−1

A

) ⊗ (XBZB)
(34)

Z′ = SZS† = X1−εZ−ε = (XA) ⊗ (
X−1

B Z−1
B

)
.

For practical purposes it is useful to calculate the operator S. A numerical calculation of S for
the group Sp(4,GF(5)) has been presented in [4]. The calculation here is similar because as
we explained qudits in GF(9) are a direct product of two qudits in GF(3), combined with the
Galois structure. The two modes here are the ‘A-Galois’ and ‘B-Galois’. In conjuction with
the X′ and Z′ we also need to consider the (X′)ε and (Z′)ε

(X′)ε = ω2XZ1+ε = ω2(XAZA) ⊗ ZB
(35)

(Z′)ε = ωX−1−εZ−1+ε = ω
(
X−1

A Z−1
A

) ⊗ (
X−1

B ZB

)
.

We now construct numerically the common eigenstates of Z′ and (Z′)ε which are the
|J ′; 4 n〉 = S|J ; 4 n〉 up to a phase factor. We want to chose phases such that

(X′)β |J ′; 4 m〉 = |J ′; 4 m + β〉 (36)

and we achieve this starting from the state |J ′; 4 − 1 − ε〉 (for which we chose an arbitrary
phase) and applying equation (36) numerically. In table 1 we present results for the

S(n,m) = 〈J ; 4 n|S|J ; 4 m〉 = 〈J ; 4 n|J ′; 4 m〉 (37)

with m = 1 + ε.
We stress again that the results of this section depend on the choice of the irreducible

polynomial. However, different choices lead to isomorphic results.
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Table 1. The coefficients S(nA + εnB, 1 + ε) defined in equation (37). Here z1 = 0.333, z2 = z1ω

and z3 = z1ω
−1.

nB = −1 nB = 0 nB = 1

nA = −1 z2 z3 z1

nA = 0 z2 z2 z2

nA = 1 z1 z3 z2

3. Local and entangling transformations on multiqudits

We consider N Hilbert spaces Hi which are all isomorphic to the H studied above and which
describe N quantum systems. We also consider the productH = H1⊗· · ·⊗HN . On the Hilbert
space H we consider operators similar to the ones used above and we use an index i to indicate
the Hilbert space on which they act, with the operator 1 acting on the rest Hilbert spaces. For
example, Zi = 1 ⊗ · · · ⊗ Z ⊗ · · · ⊗ 1. For the states we use the index i to indicate states in
the Hi . For example, |Ji; j n〉 are the angular momentum states in the Hi . The Zi has the
2j + 1 eigenvalues ωm and there is a degeneracy with (2j + 1)N−1 eigenvectors corresponding
to each eigenvalue. We consider the common eigenvectors of all Zi with i = 1, . . . , N (which
commute with each other) and to each set of eigenvalues {mi} corresponds (up to a phase
factor) one normalized eigenvector

Zi |J ; j{m	}〉 = ω(mi)|J ; j{m	}〉 |J ; j{m	}〉 ≡ |Ji; j m1〉 ⊗ · · · ⊗ |Ji; j mN 〉. (38)

In the space H we consider the groups

GL = [SU(2j + 1)]N ≡ SU(2j + 1) × · · · × SU(2j + 1) (39)

GLE = SU [(2j + 1)N ] GL ⊂ GLE. (40)

The group GL describes local transformations (the index L indicates local). It performs
independent unitary transformations on each of the N components of the system; and therefore
if it acts on a factorizable pure state, it gives another factorizable pure state. It has the
N [(2j + 1)2 − 1] generators Di(αi, βi). The group GLE is more general and describes both
local and entangling transformations (the indices LE indicate local and entangling). It has
the (2j + 1)2N − 1 generators D1(α1, β1) . . . DN(αN, βN). From them the N [(2j + 1)2 − 1]
generators contain only one non-trivial factor (the other factors are 1) and are associated, as
we explained, with local transformations; the rest (2j +1)2N −1−N [(2j +1)2 −1] generators
contain two or more non-trivial factors and describe entangling transformations. Therefore
GL is a subgroup of GLE (the ⊂ denotes subgroup).

In this paper we are interested in symplectic transformations in the [GF(pn)×GF(pn)]N

phase space (for 2j + 1 = pn). Here also we make the distinction between the groups

G′
L = [Sp(2,GF(pn))]N G′

L ⊂ GL (41)

G′
LE = Sp(2N,GF(pn)) G′

L ⊂ G′
LE ⊂ GLE. (42)

G′
L describes local symplectic transformations and it is a straightforward generalization of our

discussion in section 2.1. It performs independent symplectic transformations on each of the
[GF(pn) × GF(pn)] phase spaces; and therefore if it acts on a factorizable pure state it gives
another factorizable pure state. The symplectic transformations are unitary transformations
and therefore the G′

L is a subgroup of GL. In fact, the G′
L is a finite group that depends on

3N integers in GF(pn); while the GL is a continuous group that depends on N [(2j + 1)2 − 1]
real variables.
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The more general G′
LE group describes both local and entangling symplectic

transformations in the total phase space [GF(pn) × GF(pn)]N and we study it below. The
G′

L is a subgroup of G′
LE which as will see below is a finite group that depends on 2N2 + N

integers in GF(pn). The symplectic transformations are unitary transformations and therefore
the G′

LE is a subgroup of GLE which is a continuous group that depends on (2j + 1)2N − 1
real variables.

3.1. Symplectic Sp(2N,GF(pn)) entangling transformations

We consider the following unitary transformations in the [Z(2j + 1) × Z(2j + 1)]N phase
space

X′
i = SXiS

† = (
X

α1i

1 Z
β1i

1

)
. . .

(
X

αNi

N Z
βNi

N

)
(43)

Z′
i = SZiS

† = (
X

γ1i

1 Z
δ1i

1

)
. . .

(
X

γNi

N Z
δNi

N

)
.

We require that they preserve equations (6) and also that for i �= k the Xi, Zi commute with
the Xk,Zk . In other words we require that

(X′
i )

2j+1 = (Z′
i )

2j+1 = 1 (X′
i )

β(Z′
i )

α = (Z′
i )

α(X′
i )

βω(−αβ)

i �= k → [Xi,Xk] = [Xi, Zk] = [Zi,Xk] = [Zi, Zk] = 0. (44)

Physically these transformations rotate and rescale the Jz1, . . . , JzN , θz1, . . . , θzN axes into
J ′

z1 = SJz1S
†, . . . , J ′

zN = SJzNS†, θ ′
z1 = Sθz1S

†, . . . , θ ′
zN = SθzNS† in a way that the phase

space which is the lattice [Z(2j + 1) ×Z(2j + 1)]N , is preserved. These requirements lead to
the constraints

N∑
	=1

(α	iβ	k − β	iα	k) = 0
N∑

	=1

(γ	iδ	k − δ	iγ	k) = 0
N∑

	=1

(α	iδ	k − β	iγ	k) = δ(i, k).

(45)

We note that there are 4N2 integer parameters in these transformations and 2N2 − N

constraints. Therefore there are 2N2 + N independent integer parameters. We make here
a similar comment to that made earlier about Galois and non-Galois qudits. We can perform
the above symplectic transformations on non-Galois qudits only if we can find 4N2 integers
in Z(2j + 1) which obey all these constraints. And this might be very difficult. But with
Galois qudits (2j + 1 = pn) we simply choose 2N2 + N integer parameters and then solve the
constraints (45) (because the inverses exist) to find the rest of the parameters. Another way of
putting it, is that for Galois qudits the phase space is a finite geometry and discrete rotations
are well defined. The transformations of equation (43) are symplectic Sp(2N,GF(pn))

transformations (the analogue of Sp(2N,R) in the N-dimensional harmonic oscillator).
The various Z′

i commute with each other and we consider their common eigenvectors
which we denote as |J ′; j{mi}〉

Z′
i |J ′; j {m	}〉 = ω(mi)|J ′; j {m	}〉 |J ′; j {m	}〉 = S|J ; j {m	}〉. (46)

For each Z′
i there is degeneracy with (2j + 1)N−1 eigenvectors corresponding to each

eigenvalue. But in equation (46) we consider the common eigenvectors of all Z′
i (which

commute with each other) and to each set of eigenvalues {mi} corresponds (up to a phase
factor) one normalized eigenvector. From a practical point of view, the problem of finding the
common eigenvectors of all Z′

i is complex for large values of N, j . The numerical technique
has been discussed in [4] for Sp(4,GF(5)) and is also discussed below, for the more complex
case of Sp(6,GF(3)) (an example with three qutrits).

We can now calculate the matrix elements of the operator S,

S(m1, . . . , mN |n1, . . . , nN) ≡ 〈J ; j {m	}|S|J ; j {n	}〉 = 〈J ; j {m	}|J ′; j {n	}〉. (47)
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4. Repetition codes

In a previous paper we generalized Shor’s coding method for qudits. This is a concatenated
code in two steps. In the first step we introduce J -redundancy (amplitude redundancy). We
consider the following subspace of H:

HA = span{|JA; j m〉 ≡ |J ; j m〉 ⊗ · · · ⊗ |J ; j m〉,m = −j, . . . , j} (48)

where the notation span{} is self-evident. HA is isomorphic to the Hilbert space H. In this
space we have shown that

ZA = Zi
A XA = X1 . . . XN
A [Zi,
A] = [X1 · · · XN,
A] = 0 (49)

where 
A is the projection operator in HA


A =
∑
m

|J ; j m〉〈J ; j m| ⊗ · · · ⊗ |J ; j m〉〈J ; j m|. (50)

We can easily see that the ZiZ
−1
k are stabilizers of all states in HA. We call Gi the cyclic

group of order 2j + 1, generated by ZiZ
−1
i+1. The total Abelian finite group of the stabilizers is

the direct product

G = G1 × · · · × GN−1 Gi = {
1, ZiZ

−1
i+1, . . . ,

[
ZiZ

−1
i+1

]2j}
(51)

and is of order (2j + 1)N−1. We note that both XA and ZA commute with all the stabilizers and
that they are defined up to a stabilizer in the sense that the gXA, gZA where g is any stabilizer
in G, act on the states in HA in the same way as the XA,ZA, correspondingly.

The generator ZA contains only one Zi (acting on one qudit). Therefore the distance
of this code is one. In the second step we introduce θ -redundancy (phase redundancy) as
discussed in [11]. This coding scheme requires NM qudits and for noise acting on one qudit
we can take N = M = 3 which gives the ‘nine qudit code’.

In this paper we show that the second step of this concatenated code (and the extra qudits
that it involves) are unnecessary, if instead of the space HA we use the space HS ≡ SHA which
comprises the states S|f 〉 where |f 〉 is a state in HA and S are the symplectic transformations of
equations (43). The space HS is different from the space HA. The symplectic transformations
map H onto itself. HA is a subspace of H and through symplectic transformations is
mapped into HS ; which is also a subspace of H and which is isomorphic to HA because
the transformation is unitary. The distance of the code based on HA is 1. We show that the
distance of the code based on HS is greater than 1. As the distance of the code increases,
errors on more qudits can be corrected.

4.1. Repetition codes with symplectically entangled states

The (2j +1)-dimensional space HS ≡ SHA is a subspace of H and is isomorphic to HA. Using
this isomorphism, we introduce the J -states in HS ,

|JS; j m〉 = S|JA; j m〉 = S|J ; j m〉 ⊗ · · · ⊗ |J ; j m〉
=

∑
n1,...nN

S(n1, . . . nN |m, . . . , m)|J ; j n1〉 ⊗ · · · ⊗ |J ; j nN 〉 (52)

and also the Z and X operators in HS ,

ZS = SZAS† = SZiS
†
S = Z′

i
S (53)

XS = SXAS† = SX1 · · · XNS†
S = X′
1 . . . X′

N
S (54)
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S = S
AS† =
∑
m

|JS; j m〉〈JS; j m| (55)

[Z′
i , 
S] = [X′

1 . . . X′
N,
S] = 0. (56)

Here 
S is the projection operator in HS . Using equations (43) we find that

ZS = [(
X

γ1i

1 Z
δ1i

1

)
. . .

(
X

γNi

N Z
δNi

N

)]

S

XS = [(
X

α11
1 Z

β11
1

)
. . .

(
X

αN1
N Z

βN1
N

)]
. . .

[
(X

α1N

1 Z
β1N

1

)
. . .

(
X

αNN

N Z
βNN

N

)]

S

= ωφ
[(

X
α1N +···+α1N

1 Z
β1N +···+β1N

1

)
. . .

(
X

αN1+···+αNN

N Z
βN1+···+βNN

N

)]

S (57)

where the phase φ is due to the non-commutativity of X and Z. It is seen that both XS and ZS

are products of many operators acting on all qudits. Consequently the code based on HS has
(in general) distance greater than 1. Below we use the stabilizers to find the distance.

4.2. Stabilizers

We easily see that

Z′
i (Z

′
k)

−1|JS; j m〉 = |JS; j m〉. (58)

Therefore the Z′
i (Z

′
k)

−1 are stabilizers of all states in HS . They form an Abelian finite group
with N − 1 generators

Z′
i (Z

′
i+1)

−1 = ωφi D1(δ1i − δ1,i+1, γ1i − γ1,i+1) . . . DN(δNi − δN,i+1, γNi − γN,i+1) (59)

where i = 1, . . . , N − 1 and Di(α, β) = Zα
i X

β

i ω(−2−1αβ). We call Gi the cyclic group of
order 2j + 1, generated by Z′

i (Z
′
i+1)

−1. The total Abelian finite group of the stabilizers is the
direct product

G′ = G′
1 × · · · × G′

N−1 G′
i = {1, Z′

i (Z
′
i+1)

−1, . . . , [Z′
i (Z

′
i+1)

−1]2j } (60)

and is of order (2j + 1)N−1. The stabilizers g	 (	 = 1, . . . , (2j + 1)N−1) define the codespace
HS in the sense that if g	|c〉 = |c〉 for all stabilizers, then the state |c〉 belongs in HS .

The stabilizers are of the form

g	 = D1(s	1, t	1) . . . DN(s	N , t	N). (61)

Operators which commute with all stabilizers (and are not themselves stabilizers) take the
states in HS into other states within HS ; and conversely, operators which do that, commute
with all stabilizers. Such operators can be used to find the distance of the code.

In order to see if the distance is 1 or greater than 1, we consider all operators Dk(u, v)

(for all k = 1, . . . , N and all u, v ∈ Z(2j + 1)) which act on one qudit and calculate their
commutators with all stabilizers,

[Dk(u, v), g	] = [Dk(u, v),D1(s	1, t	1) . . . DN(s	N , t	N)]

= 2i sin

[
π

2j + 1
(ut	k − vs	k)

]

× D1(s	1, t	1) . . . Dk(u + s	k, v + t	k) . . . DN(s	N , t	N). (62)

If at least one of the Dk(u, v) commutes with all the stabilizers g	, i.e., if there exists u, v such
that

ut	k − vs	k = 0(mod 2j + 1) (63)

for all 	, then the distance of the code is 1. In this case the Dk(u, v) acting on one codeword
gives another codeword. If there exists no such u, v then the distance of the code is greater
than 1. Indeed an arbitrary operator Uk acting on the k-qudit can be written according
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to equation (11), as as a linear combination
∑

µ(u, v)Dk(u, v) and at least some of its
commutators with the stabilizers will be non-zero. Such an operator cannot act on codewords
and produce other codewords.

This argument can be extended to larger distances, but at least for the example below this
is sufficient.

5. Example with three qutrits

We consider the case with j = 1 and N = 3 where the Hilbert space H is three-dimensional
and H = H ⊗ H ⊗ H . In this case equation (6) becomes

X3 = Z3 = 1 XβZα = ZαXβω(−αβ) ω = exp(i2π/3) (64)

where α, β are integers in Z(3). As previously, we use the notation X1 ≡ X ⊗ 1 ⊗ 1, X2 ≡
1 ⊗ X ⊗ 1, etc. The group of symplectic transformations is in this case G′

LE = Sp(6,Z(3))

and we consider as an example the transformations,

X′
1 = SX1S

† = (Z1)(X2)(X
−1
3 )

Z′
1 = SZ1S

† = (X1Z1)(X2)(X3Z3)

X′
2 = SX2S

† = (
X−1

1

)(
Z−1

2

)
(65)

Z′
2 = SZ2S

† = (
X−1

1 Z−1
1

)(
Z−1

2

)(
X−1

3

)
X′

3 = SX3S
† = (

X−1
1 Z1

)
(X2Z2)

(
X−1

3 Z−1
3

)
Z′

3 = SZ3S
† = (

X−1
1

)
(Z2)

(
X3Z

−1
3

)
which obey the constraints (45).

Using the formulae given earlier for the general case, we find the Abelian group (of
order 9) of the stabilizers,

G = {
1,

(
X−1

1 Z−1
1

)
(X2Z2)

(
X−1

3 Z3
)
, (X1Z1)

(
X−1

2 Z−1
2

)(
X3Z

−1
3

)
,
(
Z−1

1

)
(Z2)(X3Z3),

(Z1)
(
Z−1

2

)(
X−1

3 Z−1
3

)(
X−1

1 Z1
)(

X2Z
−1
2

)(
Z−1

3

)
,(

X1Z
−1
1

)(
X−1

2 Z2
)
(Z3)

(
X−1

1

)
(X2)(X3), (X1)

(
X−1

2

)(
X−1

3

)}
. (66)

We can easily see that none of the operators Di(α, β) commutes with all the stabilizers.
Therefore there is no operator acting on one qutrit which can transform one codeword into
another. Consequently the distance of the code is at least two.

Using equations (35), (54) and (65) we find the displacement operators in the space HS ,

ZS = (X1Z1)(X2)(X3Z3)
S = (
X−1

1 Z−1
1

)(
Z−1

2

)(
X−1

3

)

S = (

X−1
1

)
(Z2)

(
X3Z

−1
3

)

S (67)

XS = (
X1Z

−1
1

)(
X−1

2

)(
Z−1

3

)

S. (68)

We have already explained that instead of XS we can use gXS where g is any stabilizer. Using
g = (

X−1
1

)
(X2)(X3) we find gXS = (

Z−1
1

)(
X3Z

−1
3

)
. This implies the distance of the code 2.

We note that the distance is 2 for the transformations of equation (64). Different
transformations might lead to different distance.

5.1. Numerical calculation of the codespace

In order to find the common eigenvectors |J ′; 1 {m1,m2,m3}〉 of Z′
1, Z

′
2, Z

′
3, we first consider

the Z′
1 which consists of the three operators X1Z1, X2, X3Z3, and in the basis |J ; 1

{n1, n2, n3}〉 is the Kronecker product of the three matrices δ(n1,m1 + 1)ω(m1), δ(n2,m2 + 1)
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Table 2. The coefficients S(n1, n2, n3|−1,−1,−1) used in the calculation of |JS ; 1 m〉 in
equation (69). Each cell contains three complex values for n3 = −1, 0, 1 (in that order). Here
z1 = −0.0380 + 0.1887i, z2 = z1ω

−1 and z3 = z1ω
−2.

n1 = −1 n1 = 0 n1 = 1

n2 = −1 z1, z1, z3 z2, z3, z3 z1, z3, z1

n2 = 0 z1, z3, z1 z2, z2, z1 z1, z2, z2

n2 = 1 z2, z3, z3 z3, z2, z3 z2, z2, z1

and δ(n3,m3 + 1)ω(m3) . We calculated numerically this Kronecker product (which is a 27 ×
27 matrix) and its eigenvalues and eigenvectors. The eigenvalues are ω, 1 and ω−1 and there
are nine eigenvectors corresponding to each of these eigenvalues. We have constructed the
three 27 × 9 matrices V (m1) (m1 = −1, 0, 1) which have as columns the nine eigenvectors
corresponding to the same eigenvalue ω(m1). Clearly the |J ′; 1{m1,m2,m3}〉 is a linear
combination of the nine eigenvectors corresponding to the eigenvalue ω(m1) and this in
the matrix notation is V (m1)A(m1,m2,m3) where A(m1,m2,m3) is a 9 × 1 vector of the
appropriate coefficients.

We next calculated numerically the Kronecker product corresponding to Z′
2. Since

the V (m1)A(m1,m2,m3) is an eigenvector of Z′
2 with eigenvalue m2 this implies that

(Z′
2 −ω(m2)1)V (m1)A(m1,m2,m3) = 0 and therefore the A(m1,m2,m3) belongs in the null

space of (Z′
2 −ω(m2)1)V (m1) which we denote as N(m1,m2) (and which is readily available

in most computer libraries, e.g., MATLAB). In this case the null space is three-dimensional and
the N(m1,m2) is a 9 × 3 matrix. The vector A(m1,m2,m3) is a linear combination of the three
vectors in the null space and can be written as A(m1,m2,m3) = N(m1,m2)B(m1,m2,m3)

where B(m1,m2,m3) is a 3 × 1 vector of the appropriate coefficients.
We next calculated numerically the Kronecker product corresponding to Z′

3. Since
the V (m1)A(m1,m2,m3) = V (m1)N(m1,m2)B(m1,m2,m3) is an eigenvector of Z′

3 with
eigenvalue m3 this implies that (Z′

3 − ω(m3)1)V (m1)N(m1,m2)B(m1,m2,m3) = 0 and
therefore the B(m1,m2,m3) belongs in the null space of (Z′

3 − ω(m3)1)V (m1)N(m1,m2)

which in this case is one-dimensional (for fixed m1,m2,m3). We have calculated this
numerically and we have found the vector B(m1,m2,m3). In this way we have calculated all
the eigenvectors |J ′; 1{m1,m2,m3}〉 up to phase factors.

In order to calculate the phases, we started from the lowest state |J ′; 1 {−1,−1,−1}〉
and used numerically the equation

(X′
1)

m1+1(X′
2)

m2+1(X′
3)

m3+1|J ′; 1 {−1,−1,−1}〉 = |J ′; 1 {m1,m2,m3}〉. (69)

We checked that the |J ′; 1{m1,m2,m3}〉 calculated through this equation differ from the
corresponding vectors calculated above as common eigenvectors of the matrices Z′

1, Z
′
2, Z

′
3,

only by a phase factor. This is a test that the numerical work is correct and at the same time it
provides the phases.

We then calculated the matrix elements of the operator S(n1, n2, n3|m1,m2,m3) defined
in equation (47). The three-dimensional space HS is spanned by the three vectors

|JS; 1 m〉 =
∑

n1,n2,n3

S(n1, n2, n3|m,m,m)|J ; 1 n1〉 ⊗ |J ; 1 n2〉 ⊗ |J ; 1 n3〉. (70)

The coefficients S1(n1, n2, n3|m,m,m) are given in tables 2, 3 and 4.
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Table 3. The coefficients S(n1, n2, n3|0, 0, 0) used in the calculation of |JS ; 1 m〉 in equation (69).
Each cell contains three complex values for n3 = −1, 0, 1 (in that order). Here z1 =
−0.0380 + 0.1887i, z2 = z1ω

−1 and z3 = z1ω
−2.

n1 = −1 n1 = 0 n1 = 1

n2 = −1 z1, z1, z3 z1, z2, z2 z2, z1, z2

n2 = 0 z3, z2, z3 z3, z3, z2 z1, z2, z2

n2 = 1 z3, z1, z1 z3, z2, z3 z1, z1, z3

Table 4. The coefficients S(n1, n2, n3|1, 1, 1) used in the calculation of |JS ; 1 m〉 in
equation (69). Each cell contains three complex values for n3 = −1, 0, 1 (in that order). Here
z1 = −0.0380 + 0.1887i, z2 = z1ω

−1 and z3 = z1ω
−2.

n1 = −1 n1 = 0 n1 = 1

n2 = −1 z1, z1, z3 z3, z1, z1 z3, z2, z3

n2 = 0 z2, z1, z2 z1, z1, z3 z1, z2, z2

n2 = 1 z1, z2, z2 z3, z2, z3 z3, z3, z2

6. Discussion

We have studied symplectic Sp(2N,GF(pn)) transformations in N-partite systems. They are
given in equation (43) and contain 4N2 integer parameters and 2N2 − N constraints. We
have explained that in order to solve the constraints of equation (45) we need the existence
of inverses of the parameters. For this reason we have considered Galois quantum systems
where the dimension is a power of a prime. In this case all the parameters belong to the field
GF(pn) and we can solve the constraints and we are left with 2N2 + N independent integer
parameters. We have discussed explicitly the case GF(9) in order to show how the Galois
theory can be embodied into the theory of finite quantum systems.

The symplectic operator S has been constructed numerically for the general case. This
can be used in further studies of the entanglement properties of symplectically transformed
states.

In this paper we have used symplectic transformations in the context of repetition codes.
Repetition codes are the simplest possible codes and involve a small number of qudits.
However they can only protect qudits from a very limited type of errors. Mathematically,
they are based on the Hilbert space HA of equation (48), they have distance 1 and they cannot
protect against errors that involve the Z operator.

We have considered the space HS ≡ SHA of equation (52) and shown that a code based
on HS has (in general) distance greater than 1. This is because the XS and ZS involve
simultaneous transformations on more than one qudit. Larger distance means that errors on
more qudits can be corrected.

For numerical simplicity we have considered an example with N = 3 qutrits and the
transformations of equation (64). We have described explicitly the numerical procedure that
calculates the states |JS; 1 m〉 and the result is given in equation (70). Explicit formulae for
XS,ZS are given in equations (67) and (68). We have shown that the distance of the code
is 2. This is not enough for general error correction on one qudit, but the example demonstrates
that the distance increases in symplectically entangled repetition codes and also shows how
to numerically construct the appropriate states and transformations. Examples with larger N
(and therefore larger distance) can be constructed explicitly with the numerical method that
we have described, although the calculation is longer.
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The present work provides the theoretical background for the development of repetition
codes with symplectically entangled Galois qudits.

Appendix A

The formulae given in section 2 are valid for integer j (Bose case) and small amendments to
some of them are required for half-integer j (Fermi case) [9]. Equations (1), (5), (7) and (8)
should be replaced with the equations

F = (2j + 1)−1/2
∑
m,n

ω

[(
m +

1

2

) (
n +

1

2

)]
|J ; j m〉〈J ; j n| (A.1)

X = exp

[
−i

2π

2j + 1

(
θz +

1

2

)]
Z = exp

[
i

2π

2j + 1

(
Jz +

1

2

)]
(A.2)

Xβ |θ; j m〉 = ω

[
−β

(
n +

1

2

)]
|θ; j m〉 (A.3)

Zα|J ; j m〉 = ω

[
α

(
m +

1

2

)]
|J ; j m〉 (A.4)

correspondingly. It is seen that the above equations replace the m which takes half-integer
values with the m + 1/2 which take integer values. This is because the proof of a lot of these
equations is based on the formula

(N)−1/2
N∑

n=0

exp

[
i
2π

N
n(m − m′)

]
= δ(m,m′) (A.5)

which is valid for integers.
For qubits the above equations give

X
∣∣J ; 1

2
1
2

〉 = ∣∣J ; 1
2 − 1

2

〉
X

∣∣J ; 1
2 − 1

2

〉 = ∣∣J ; 1
2

1
2

〉
(A.6)

Z
∣∣J ; 1

2
1
2

〉 = −∣∣J ; 1
2

1
2

〉
Z

∣∣J ; 1
2 − 1

2

〉 = ∣∣J ; 1
2 − 1

2

〉
(A.7)∣∣θ; 1

2
1
2

〉 = ∣∣J ; 1
2 − 1

2

〉 − ∣∣J ; 1
2

1
2

〉 ∣∣θ; 1
2 − 1

2

〉 = ∣∣J ; 1
2 − 1

2

〉
+

∣∣J ; 1
2

1
2

〉
. (A.8)

So for half integer j , we can either use the formulae given in this appendix or equivalently
we can use the Bosonic formulae given section 2 with m taking the integer values from
0 to 2j .

Appendix B

In this appendix we calculate the power (XβZα)s . We know immediately that the result is of
the form ωφXβsZαs and here we calculate the phase φ

(XβZα)s = (QA ⊗ RB)s = (QA ⊗ 1)s(1 ⊗ RB)s Q = XβAZαA R = XβB ZαB .

(B.1)

Then we have

(QA ⊗ 1)s = Q
sA

A ⊗ Q
sB

B (1 ⊗ RB)s = [(RA ⊗ 1)ε]s = (RA ⊗ 1)sε . (B.2)

Taking into account that sε = sB + ε(sA − sB) we find

(XβZα)s = (
Q

sA

A R
sB

A

) ⊗ (
Q

sB

B R
sA−sB

B

) = ωφXβsZαs

φ = 1
2αAβA

(
s2
A − sA + s2

B − sB

)
+ 1

2αBβB

(
s2
A − sA + 2s2

B − 2sAsB

)
+ αAβB

(
2sAsB − s2

B

)
(B.3)
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